

CT Imaging Pearls for Transcatheter Mitral Procedures

Philipp Blanke, MD

Director, Cardiac CT Core Laboratory Radiologist, Department of Radiology, St. Paul's Hospital/Providence Health Care Assistant Professor, University of British Columbia

Disclosures

Consultant to

Edwards Lifesciences Inc.

Neovasc Inc.

Circle Imaging

Tendyne Holdings

SPH Cardiac CT Core Lab, providing services to

Edwards Lifesciences Inc.

Neovasc Inc.

Tendyne Holdings Inc.

Transcatheter Mitral Procedures

Anatomy

'CT is the anatomical truth machine'

CT Assessment for Mitral Valve Procedures

Spectrum of Implantation/Replacement

TMVI

THV in calcific MVD

ViV

ViR

Sizing Goal: To find the right size for the right patient

Mitral annulus: saddle-shaped 3-dimensional configuration

Mitral annulus: saddle-shaped 3-dimensional configuration

Annular segmentation

CT is the gold standard for annular sizing

Different devices – Different requirements!

Challenge: Different devices – Different requirements!

Prediction of Anatomical Risk Goal: Prevent procedure-related adverse events

Neo-LVOT

Anatomy & Device Related Factors

TMVI – LVOT Obstruction

Patient specific modeling is required (?industry standard) Challenge: Cut-off values for neo-LVOT dimensions

Access Planning Goals: Optimal delivery approach (TA & TS)

TMVI – Transapical access

CT can predict the orthogonal access point

Challenge: Speak the same language

Transseptal puncture

Prediction and Simulation of Trans-septal Crossing

Orientation within the 3D space Goal: C-arm angulation for optimal delivery approach & device positioning 'peri-procedural guidance'

Coplanar View to facilitate Coaxial Deployment

CT can predict the coplanar views

Blanke et al. JCCT 2015

Input & Output

Anatomy

'CT is the anatomical truth machine' Now: Fine tuning!

